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DNA: The secret of life

Your DNA, along with your
environment and experiences,
shapes who you are

* Height

* Hair, eye, skin color

* Broad/narrow, small/large features
* Susceptibility to disease

* Response to drug treatments

* Longevity and cognition

Physical traits tend to be strongly genetic,
social characteristics tend to be strongly
environmental, and everything else is a
combination




Each cell of your body
contains an exact copy
of your 3 billion base

pair genome.

A /\/
chromosome

DNA

Adapted from National Human Genome Research Institute

Cells & DNA

Your specific nucleotide
sequence encodes the
genetic program for your
cells and ultimately your
traits




The Origins of DNA Sequencing

Nature Vol. 265 February 24 1977

687

articles

Nucleotide sequence of bacteriophage

® X174 DNA

F. Sanger, G. M. Air*, B. G. Barrell, N. L. Brown', A. R. Coulson, J. C. Fiddes,
C. A. Hutchison I11%, P. M. Slocombe* & M. Smith*

MRC Laboratory of Molecular Biology, Hills Road, Cambridge CB2 2QH, UK

A DNA sequence for the genome of bacteriophage ®X174
of approximately 5,375 nucleotides has been determined
using the rapid and simple ‘plus and minus' method. The
sequence identifies many of the features responsible for the
production of the proteins of the nine known genes of the
organism, including initiation and termination sites for the
proteins and RNAs. Two pairs of genes are coded by the
same region of DNA using different reading [rames.

Tue genome of bacteriophage ®X174 is a single-stranded,
circular DNA of approximately 5,400 nucleotides coding for
nine known proteins, The order of these genes, as determined by
genetic techniques® 4, is A-B-C-D-E-J-F-G-H. Genes F, G
and H code for structural proteins of the virus capsid, and gene

uence work) codes for a small basic protein

strand DNA of ®X hasthe same sequence as the mRNA and, in
certain conditions, will bind ribosomes so that a protected
fragment can be isolated and sequenced. Only one major site
was found. By comparison with the amino acid sequence data it
was found that this ribosome binding site sequence coded for the
initiation of the gene G protein'® (positions 2,362-2,413).

At this stage sequencing techniques using primed synthesis
with DNA polymerase were being developed'® and Schott'”
synthesised a decanucleotide with a sequence complementary to
part of the ribosome binding site. This was used 1o prime into
the intercistronic region between the /- and G genes, using DNA
polymerase and **P-labelled triphosphates'®. The ribo-substitu-
tion technique' facilitated the ence determi of the
labelled DNA produced. This decanucleotide-primed system
was also used to develop the plus and minus method’. Suitable
synthetic primers are, however, difficult to prepare and as

Sanger et al. (1977) Nature

Ist Complete Organism
Bacteriophage ¢ X174;5375 bp

Awarded Nobel Prize in 1980

ATGUZC

Radioactive Chain Termination
5000bp / week / person

http://en.wikipedia.org/wiki/File:Sequencing.jpg
http://www.answers.com/topic/automated-sequencer



Milestones in DNA Sequencing

The
Drosophila
Geénome

RAY Averican Anoaunm&ﬁkh(l’z’lnl OF SGaNGE .. ; :
(TIGR/Celera, 1995-2001)




Genomics across the tree of life

GENOM




*  What is your genome sequence!

Unsolved Questions in Biology

The instruments provide the data, but
none of the answers to any of these
questions.

What software and systems will?

And who will create them?

e Plus hundreds and hundreds more




Who is a Data Scientist!?

Data Scientific
Engineering Method ‘
( Domain ) \ / ( Math

Expertise
\ /

Data
Science

Hacker At
( Mindset > / \ ( Statistics
( Visualization ) ( Advancgd >
: Computing

http://en.wikipedia.org/wiki/Data_science



CSHL Quantitative Biology
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Mickey Atwal Molly Hammel lvan lossifov Justin Kinney Alexei Koulakov
Population Genetics Gene regulatory Human Genetics Biophysics Neurobiology
Cancer, Fertility Networks, RNA Biology Molecular Networks Machine learning Cortical design, Memory

i
m |
Alex Krasnitz Dan Levy Partha Mitra Adam Siepel Michael Wigler
Genomics of Cancer Human Genetics Neuroscience Evolution Genetic Disorders

Machine Learning Phylogenetics, CNVs Neural Imaging & Disease Functional Annotation Cancer, Autism



Results
Domain
Knowledge

Machine Learning
classification, modeling,
visualization & data Integration

Scalable Algorithms

Streaming, Sampling, Indexing, Parallel

Compute Systems
CPU, GPU, Distributed, Clouds, Workflows

|O Systems

Hardrives, Networking, Databases, Compression, LIMS

Sensors & Metadata
Sequencers, Microscopy, Imaging, Mass spec, Metadata & Ontologies
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Massively Parallel Sequencing
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Cost per Genome
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Cost per Genome
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HiSeq X Ten
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320 genomes per week / 18,000 genomes per year
$1000 per genome / ~$10 M per instrument
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Sequencing Centers
:,f Worldwide capacity exceeds 25 Pbp/year S
¢ Approximately 50k human genomes sequenced

+ . _
l "°W35 13

.3

Next Generation Genomics: World Map of High-throughput Sequencers
http://omicsmaps.com



How much is a petabyte?

Unit__ _ Size
Byte I

Kilobyte 1,000
Megabyte 1,000,000
Gigabyte 1,000,000,000
Terabyte 1,000,000,000,000
Petabyte 1,000,000,000,000,000

*Technically a kilobyte is 210 and a petabyte is 2°°



How much is a petabyte?
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1PB Data
200,000 DVDs
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DNA Data Tsunami

Current world-wide sequencing capacity is growing at ~3x per year!

1400 - ~1 exabyte |

1000 -
800 -
600 -
400 -

200 - — h___"l _'ti___

2014 2015 2016 2017 2018

Petabytes per year



DNA Data Tsunami

Current world-wide sequencing capacity is growing at ~3x per year!

900 -

800 - ~1 zettabyte
700 - by 2024

600 -
500 -
400 -

300 © | ~1 exabyte |
200 - | by2018 =

100 - '

2014 2015 2016 2017 2018 2019 2020 2021 2022 2023 2024

Exabytes per year



How much is a zettabyte!

Unit | Size
Byte I
Kilobyte 1,000
Megabyte 1,000,000
Gigabyte 1,000,000,000
Terabyte 1,000,000,000,000
Petabyte 1,000,000,000,000,000
Exabyte 1,000,000,000,000,000,000

Zettabyte 1,000,000,000,000,000,000,000



How much is a zettabyte?

100 GB / Genome
4.7GB / DVD
~20 DVDs / Genome

X

10,000,000,000 Genomes

1ZB Data 150,000 miles of DVDs Both currently ~100Pb
200,000,000,000 DVDs ~ %2 distance to moon And growing exponentially



Sequencing Centers 2014

Map | Satelite

Next Generation Genomics: World Map of High-throughput Sequencers
http://omicsmaps.com



Sequencing Centers 2024
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Biological Sensor Network

Oxford Nanopore DC Metro via the LA Times

The rise of a digital immune system
Schatz, MC, Phillippy,AM (2012) GigaScience |:4



Biological Sensor Network

@JasonWilliamsNY Aspyn @ CSH High School

The rise of a digital immune system
Schatz, MC, Phillippy,AM (2012) GigaScience |:4



Data Production & Collection

Expect massive growth to sequencing and other

biological sensor data over the next 10 years

* Exascale biology is certain, zettascale on the horizon

* Compression helps, but need to aggressively throw out data

* Requires careful consideration of the “preciousness” of the
sample

Major data producers concentrated in hospitals,

universities, agricultural companies, research institutes

*  Major efforts in human health and disease, agriculture, bioenergy

*  Genomic information coupled with medical records and other
medical data

But also widely distributed mobile sensors

* Schools, offices, sports arenas, transportations centers, farms &
food distribution centers

* Monitoring and surveillance, as ubiquitous as weather stations

* The rise of a digital immune system?
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Sequencing Centers 2024
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Informatics Centers 2024
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Informatics Centers 2014
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DOE Systems
Biology Knowledgebase

-
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A

KBase data

access and
compute

http://kbase.us: Predictive Biology in Microbes, Plants, and Meta-communities



Personal Genomics

How does your genome compare to the reference?

Creates magical
i i >
LNy I 5 technology




Crossbow

http://bowtie-bio.sourceforge.net/crossbow

* Align billions of reads and find SNPs

— Reuse software components: Hadoop
Streaming

— Mapping with Bowtie, SNP calling with
SOAPsnp

* 4 hour end-to-end runtime including
upload

— Costs $85;Todays costs <$10

* Very compelling example of cloud
computing in genomics

* Commercial vendors probably have
better security than your institution

* Need more applications!

Searching for SNPs with Cloud Computing.
Langmead B, Schatz MC, Lin J, Pop M, Salzberg SL (2009) Genome Biology. 10:R 134



Each cell of your body
contains an exact copy
of your 3 billion base

pair genome.

A /\/
chromosome

DNA

Adapted from National Human Genome Research Institute

Cells & DNA

Your specific nucleotide
sequence encodes the
genetic program for your
cells and ultimately your
traits




Quantification of I e
mature tmnmfph I ..
and small RNA = T
s
RNA-seq —
Alternative splicing
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Soon et al., Molecular Systems Biology, 2013



Compute & Algorithmic Challenges

Expect to see many dozens of major informatics 3 m
centers that consolidate regional / topical information
* Clouds for Cancer, Autism, Heart Disease, etc

* Plus many smaller warehouses down to individuals

* Move the code to the data

Parallel hardware and algorithms are required

* Expect to see >1000 cores in a single computer

 Compute & IO needs to be considered together

* Rewriting efficient parallel software is complex and
expensive

Applications will shift from individuals to populations
* Read mapping & assembly fade out

* Population analysis and time series analysis fade in

* Need for network analysis, probabilistic techniques



Results
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Genetic Basis of Autism Spectrum Disorders

Complex disorders of brain development

* Characterized by difficulties in social interaction,
verbal and nonverbal communication and repetitive
behaviors.

* Have their roots in very early brain development, and
the most obvious signs of autism and symptoms of
autism tend to emerge between 2 and 3 years of age.

U.S. CDC identify around | in 68 American children
as on the autism spectrum

* Ten-fold increase in prevalence in 40 years, only
partly explained by improved diagnosis and
awareness.

* Studies also show that autism is four to five times
more common among boys than girls.

What is Autism? * Specific causes remain elusive
at i1s Autism!

http://www.autismspeaks.org/what-autism



Searching for the genetic risk factors

Search Strategy @
* Thousands of families identified from a

dozen hospitals around the United States

* Large scale genome sequencing of “simplex” P
families: mother, father, affected child,
unaffected sibling @

* Unaffected siblings provide a natural control

for environmental factors

Are there any genetic variants present in
affected children, that are not in their @

parents or unaffected siblings?

SIMONS FOUNDATION P
/\me RESEARCH INITIATIVE




Frequency

Population Analysis of the SSC
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Constructed database of >1M transmitted and de novo genetic mutations

100



De novo mutation discovery and validation

: 9
De novo mutations:
Sequences not inherited from your parents. E

Reference: .. . TCAAATCCTTTTAATAAAGAAGAGCTGACA...

Father(l): ...TCAAATCCTTTTAATAAAGAAGAGCTGACA...
Father(2): ...TCAAATCCTTTTAATAAAGAAGAGCTGACA...
Mother(1l): ...TCAAATCCTTTTAATAAAGAAGAGCTGACA...
Mother(2): ...TCAAATCCTTTTAATAAAGAAGAGCTGACA...
Sibling(1l): ...TCAAATCCTTTTAATAAAGAAGAGCTGACA...
Sibling(2): ...TCAAATCCTTTTAATAAAGAAGAGCTGACA...
Proband(1l): ...TCAAATCCTTTTAATAAAGAAGAGCTGACA...
Proband(2): ...TCAAATCCTTTTAAT****AAGAGCTGACA. ..

4bp heterozygous deletion at chr15:93524061 CHD?2




De novo Genetics of Autism

* In 593 family quads so far, we see significant enrichment in de novo
likely gene killers in the autistic kids

— Opverall rate basically I:1

— 2:1 enrichment in nonsense mutations
— 2:1 enrichment in frameshift indels

— 4:| enrichment in splice-site mutations

— Most de novo originate in the paternal line in an age-dependent
manner (56:18 of the mutations that we could determine)

* Observe strong overlap with the 842 genes known to be
associated with fragile X protein FMPR

— Related to neuron development and synaptic plasticity

— Also strong overlap with chromatin remodelers

Accurate detection of de novo and transmitted INDELs within exome-capture data using micro-assembly
Narzisi, G, O’Rawe, |, lossifov, |, Lee,Y,Wang, Z,Wu,Y, Lyon, G,Wigler, M, Schatz, MC (2014) In press.



LETTER

Tumour evolution inferred by single-cell sequencing

Nicholas Navin®?, Jude Kendall', Jennifer Troge', Peter Andrews’, Linda Rodgers', Jeanne McIndoo', Kerry Cook’,
Asya Stepansky’, Dan Levy', Diane Esposito’, Lakshmi Muthuswamy®, Alex Krasnitz', W. Richard McCombie', James Hicks'
& Michael Wigler'

doi:10.1038/nature09807
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What makes us human?

“Human Accelerated Regions”

TCAGCGEJGGAAATGGTTTCTATCAAAATIGA TTTAGAGATTTTCCTCAAG
TCAGCAQIIGGAAATAGTTTCTATCAAAAT]TIA TTTAGAGATTTTCCTCA‘E
TCAGCGEIIGCAAACAGTTTCTATCAAAATITIA TTTAGAGATTTTCCTCA‘ﬁ
TCAGCCQEIIGGAAATGGTTTCTATCAAAATITIA TTTAGAGATTTTCCTCA‘ﬂ
TCAGCAQIIGGAAATGGTTTCTATCAAAATTIA TTTAGAGATTTTCCTCA‘ﬂ
TCAGCAGIAGAAACAGTTTCTATCAAAATTIA TTTAGAGATTTTCCTCAAN

ANDREW SULLIVAN ON BLIND FAITH = LEQ & JACK & MATT &

AA
i

u.
".
".

Systematic scan of recent
human evolution identified
the gene HAR1F as the
most dramatic “human
accelerated region”.

Follow up analysis found it
was specifically expressed in
Cajal-Retzius neurons in the
human brain from 6 to 19
gestational weeks.

(Pollard et al., Nature, 20006)



Genetic Privacy

By combining other pieces of demographic in-
formation, such as date and place of birth, they fully
exposed the identity of their biological fathers.
Lunshof et al. (10) were the first to speculate that
thls techruque could expose the ﬁ.lll identity of

Identifying Personal Genomes by
Surname Inference

Melissa Gymrek,*>>* Amy L. McGuire,® D.

Sharing sequencing data sets without identi
Here, we report that surnames can be recove
repeats on the Y chromosome (Y-STRs) and
We show that a combination of a surname
can be used to triangulate the identity of the
relies on free, publicly accessible Internet req
identification for U.S. males. We further demd
with high probability the identities of multip

human societies, resulting in their
segregation with Y-chromosome haplo
(1-5). Based on this observation, multiple

S urnames are paternally inherited in

Whitehead Institute for Biomedical Resear(h 9 Cambri
Center, Cambridge, MA 02142, USA. “Harvard-Massachus
Institute of Technology (MIT) Division of Health Sciences
Technology, MIT, Cambridge, MA 02139, USA. *Program in
ical and Population Genetics, Broad Institute of MIT and Ha
Cambridge, MA 02142, USA. “Department of Molecula
ology and Diabetes Unit, Massachusetts General Hosp)
Boston, MA 02114, USA. *Center for Medical Ethics and He
Policy, Baylor College of Medicine, Houston, TX 77030,

“Department of Statistics and 09eratlons Research, Tel
University, Tel Aviv 69978, Israel. “School of Computer Scie|
Tel Aviv University, Tel Aviv 69978, Israel. *Department of
lecular M1croblology and Biotechnology, Tel-Aviv University}
Aviv 69978, Israel. *The International Computer Science |
tute, Berkeley, CA 94704, USA.

*To whom correspondence should be addressed. E-i
yaniv@wi.mit.edu

Predicting Social Security numbers from public data

Alessandro Acquisti’ and Ralph Gross

Carnegie Mellon University, Pittsburgh, PA 15213

Communicated by Stephen E. Fienberg, Carnegie Mellon University, Pittsburgh, PA, May 5, 2009 (received for review January 18, 2009)

Information about an individual’s place and date of birth can be
exploited to predict his or her Social Security number (SSN). Using
only publicly available information, we observed a correlation
between individuals’ SSNs and their birth data and found that for
younger cohorts the correlation allows statistical inference of
private SSNs. The inferences are made possible by the public
availability of the Social Security Administration’s Death Master
File and the widespread accessibility of personal information from
multiple sources, such as data brokers or profiles on social net-
working sites. Our results highlight the unexpected privacy con-
sequences of the complex interactions among multiple data
sources in modern mformatlon economies and quantify pnvacy

number (SN). The SSA openly provides information about the
process through which ANs, GNs, and SNs are issued (1). ANs
are currently assigned based on the zipcode of the mailing
address provided in the SSN application form [RM00201.030]
(1). Low-population states and certain U.S. possessions are
allocated 1 AN each, whereas other states are allocated sets of
AN:s (for instance, an individual applying from a zipcode within
New York state may be assigned any of 85 possible first 3 SSN
digits). Within each SSA area, GNs are assigned in a precise but
nonconsecutive order between 01 and 99 [RM00201.030] (1).
Both the sets of ANs assngned to dlfferent states and the sequence

potent1a1 1dent1f1cat10n of millions of SSNs for individuals whose
birth data were available. Such findings highlight the hidden
privacy costs of widespread information dissemination and the
complex interactions among multiple data sources in modern
information economies (11), underscoring the role of public
records as breeder documents (12) of more sensitive data.

b adh a e




Learning and Translation

Tremendous power from data aggregation

* Observe the dynamics of biological systems

* Breakthroughs in medicine and biology of profound
significance

Be mindful of the risks

* The potential for over-fitting grows with the complexity of
the data, statistical significance is a statement about the
sample size

* Reproducible workflows, APls are a must

* Caution is prudent for personal data

The foundations of biology will continue to be

observation, experimentation, and interpretation

* Technology will continue to push the frontier

* Feedback loop from the results of one project into
experimental design for the next




How can you participate!

Students

* Learn python!

* Study math & statistics & computer science
* Visit the DNA Learning Center

Individuals

Personal Genome Project
Harvard Medical School

23andMe
Genetic testing and ancestry

CSHL Public Lectures & Events
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CSHL Public Lecture
June 24,2014 @ 7-9pm
Understanding Autism Spectrum Disorders: Focus on the Facts
Michael Ronemus, Ph.D. & Rebecca Sachs, Ph.D.

Thank you!

http://schatzlab.cshl.edu
@mike schatz



